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Abstract. A C-monoid is a suitably defined submonoid of a factorial monoid with finite reduced class
semigroup. This monoid plays a key role in an arithmetical investigation of a large class of Mori domains.

It is well understood that a C-monoid is Krull if and only if the reduced class semigroup coincides with

the (v-)class group of a Krull monoid, and the arithmetic of a Krull monoid can be determined by the
structure of its (v-)class group. The finiteness of the reduced class semigroup allows us to prove the

similar arithmetical finiteness for a general C-monoid to results known in the Krull case. Recently, the

algebraic structure of the reduced class semigroup has begun to be studied for a non-Krull C-monoid.
Every Krull monoid is a root-closed weakly Krull Mori monoid, and under the mild conditions, a root-

closed weakly Krull Mori monoid is a C-monoid. In this paper, we study the structure of a root-closed

weakly Krull Mori monoid and of its class semigroup.

1. Introduction

A C-monoid H is a submonoid of a factorial monoid F such that H× = F× ∩H and the reduced class
semigroup is finite. An integral domain is said to be a C-domain if its monoid of non-zero elements is a
C-monoid. C-monoids have been introduced in [14, 23] as multiplicative models to study the arithmetic
of higher-dimensional non-integrally closed Noetherian domains (or non-completely integrally closed Mori

domains). Let R be a Mori domain with f = (R : R̂) 6= {0}. If both the v-class group Cv(R̂) and the residue

ring R̂/f are finite, then R is a C-domain [15, Theorem 2.11.9], and the converse holds true for non-local
semilocal Noetherian domains [29, Corollary 4.5]. The concept of C-domains has been generalized to rings
with zero divisors, and we refer the reader to [17] for a detailed study.

Let H be a C-monoid. Then, H is a Mori monoid, and H is completely integrally closed if and only
if its reduced class semigroup is a group [15, Section 2.9]. Thus, every Krull monoid with finite (v-)class
group is a C-monoid, and the reduced class semigroup coincides with the (v-)class group. Moreover, the
arithmetic of such a monoid can be determined to a large extent by the structure of its (v-)class group
(see, [30, 20] for a survey). However, for a non-Krull C-monoid, we only have the arithmetical finiteness
results which were derived from the finite condition of the reduced class semigroup (see [15, Section 3.3
and 4.6] and [8, 7, 23, 9]).

In recent years, the algebraic structure of the reduced class semigroup of a C-monoid has begun to be
studied. The monoid B(G) of product-one sequences over a finite group G was the first class of C-monoids
for which we have an insight into a structural relationship between a C-monoid and its reduced class
semigroup. Among others, it was proved that the reduced class semigroup of B(G) is Clifford, i.e., it is a
union of groups, if and only if B(G) is a seminormal monoid if and only if the commutator subgroup of G
has at most two elements [25, Corollary 3.12]. More generally, the first two conditions were successfully
generalized to a general C-monoid, i.e., a C-monoid is seminormal if and only if its reduced class semigroup
is Clifford [19, Theorem 1.1].
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In this present paper, we study the algebraic structure of the reduced class semigroup of specific C-
monoids. Every Krull monoid is a root-closed (and so, seminormal) weakly Krull Mori monoid, and the
arithmetic of a seminormal weakly Krull Mori monoid has been studied in [16, 18]. A Weakly Krull
domain R possesses a defining system of finite character consisting of localizations of R at minimal primes

(see, [22, Chapter 22]). If R is a Mori domain with (R : R̂) 6= {0}, then multiplicative models of
localizations of R at minimal primes are finitely primary. After putting together the required background
in Section 2, we study the root-closure of finitely primary monoids, as the local case of a weakly Krull Mori
domain, in Section 3. Among other things, we describe a relationship between the root-closure and the
seminormalization of a finitely primary monoid, and we show that a root-closed finitely primary monoid
is a C-monoid (see Lemma 3.1). Moreover, we provide the structure of the reduced class semigroup of
root-closed finitely primary monoids (see, Theorem 3.4 and Corollary 3.6). In Section 4, we study the
global case for root-closed weakly Krull Mori monoids. Among other things, we provide the structural
information of the reduced class semigroup of root-closed weakly Krull Mori monoids that are C-monoids
(see, Theorem 4.4).

2. Definitions and preliminaries

In this preliminary, we gather the key notions and the required terminology, and our main references
are [15, 22]. To begin with, N denotes the set of positive integers and N0 = N∪{0}. For integers a, b ∈ Z,
[a, b] = {x ∈ Z | a ≤ x ≤ b} means the discrete interval.

Semigroups and Monoids. Throughout this paper, all semigroups are commutative and they have an
identity element. Let C be a semigroup with identity element 1. Then, C× denotes the group of invertible
elements of C, and C is called reduced if C× = {1}. An element e ∈ C is idempotent if e2 = e, and we
denote by E(C) the set of all idempotent elements of C. We say that C is cancellative if every element
a ∈ C is cancellative, i.e., ab = ac for b, c ∈ C implies that b = c. For a subset U ⊆ C, we denote by [U ]
the smallest subsemigroup of C containing U , i.e., [U ] consists of all products u1 · · ·un, where n ∈ N0 and
u1, . . . , un ∈ U . The semigroup C is said to be finitely generated if C = [U ] for a finite subset U ⊆ C.

A monoid means a cancellative semigroup. Let H be a monoid. Then, q(H) denotes the quotient group
of H, and Hred = H/H× = {aH× | a ∈ H} denotes the associated reduced monoid of H. If H is reduced,
then we set H = Hred. We denote by

• H ′ = {x ∈ q(H) | there exists an integer N ∈ N such that xn ∈ H for all n ≥ N} the seminormal-
ization of H, by

• H̃ = {x ∈ q(H) | xN ∈ H for some N ∈ N} the root closure of H, and by

• Ĥ = {x ∈ q(H) | there exists an element c ∈ H such that cxn ∈ H for all n ∈ N} the complete
integral closure of H.

Clearly, H ⊆ H ′ ⊆ H̃ ⊆ Ĥ ⊆ q(H), and the monoid H is said to be seminormal (resp., root-closed, and

completely integrally closed) if H = H ′ (resp., H = Ĥ, and H = Ĥ).
For subsets X,Y ⊆ q(H), we set (X : Y ) = {x ∈ q(H) | xY ⊆ X}, X−1 = (H : X), and Xv = (X−1)−1.

A subset X ⊆ q(H) is said to be

• H-fractional if there exists an element c ∈ H such that cX ⊆ H,

• a fractional v-ideal of H if X is H-fractional and Xv = X, and

• a v-ideal of H if X ⊆ H and Xv = X.

We denote by Fv(H) the semigroup of fractional v-ideals of H with v-multiplication, i.e., X ·v Y = (XY )v
for any X,Y ∈ Fv(H), and by Iv(H) the subsemigroup of v-ideals of H. Then, I∗v (H) = Iv(H)∩Fv(H)×

is the monoid of v-invertible v-ideals of H, and Fv(H)× = q
(
I∗v (H)

)
. Above constructions can be

generalized to monoids of r-ideals for a general ideal system r, and we refer the reader to [28, 12] for a
recent progress on the algebraic and arithmetic properties of monoids of ideals.
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The monoid H is said to be a

• Mori monoid if it satisfies the Ascending Chain Condition (ACC) on v-ideals, and

• Krull monoid if it is a completely integrally closed Mori monoid.

For a set P , we denote by F(P ) the free abelian monoid with basis P . If P = {p1, . . . , p`} is finite, then
we set F(P ) = F

(
{p1, . . . , p`}

)
= [p1, . . . , p`]. A monoid F is factorial if and only if Fred is free abelian.

Let F = F××F(P ) be a factorial monoid. Then, every element a ∈ F has a unique representation of the
form

a = ε
∏
p∈P

pvp(a) with ε ∈ F× and vp(a) = 0 for almost all p ∈ P .

A monoid homomorphism ϕ : H → D is said to be

• a divisor homomorphism if a, b ∈ H and ϕ(a) | ϕ(b) in D implies that a | b in H.

• cofinal if, for every x ∈ D, there exists a ∈ H such that x | ϕ(a) in D.

• a divisor theory if D is free abelian, ϕ is a divisor homomorphism, and for all α ∈ D, there are
a1, . . . , am ∈ H such that α = gcd

(
ϕ(a1), . . . , ϕ(am)

)
.

Let H ⊆ D be monoids. Then, H is said to be saturated (resp., cofinal) if the inclusion H ↪→ D is a divisor
homomorphism (resp., cofinal). It is easy to see that H ⊆ D is saturated if and only if H = q(H) ∩D.

Class groups. Let H ⊆ D be monoids. Then, the group q(D)/q(H) = {xq(H) | x ∈ q(D)} is called the
class group of H in D, and we usually write this group additively. We define

D/H = {aq(H) | a ∈ D} ⊆ q(D)/q(H) ,

and then it is easy to show that H ⊆ D is cofinal if and only if D/H is a group. In particular, if D/H is
finite, or if q(D)/q(H) is torsion, then D/H = q(D)/q(H) ([15, Corollary 2.4.3]). IfH(H) = {aH | a ∈ H}
is the monoid of principal ideals of H, then H(H) ⊆ I∗v (H) is a saturated and cofinal submonoid, and we
have that

Cv(H) = Fv(H)×/q
(
H(H)

)
= q

(
I∗v (H)

)
/q
(
H(H)

)
= I∗v (H)/H(H) ,

which is called the v-class group of H.
It is well known that a monoid H is Krull if and only if H has a divisor theory ([15, Theorem 2.4.8]).

Suppose that H is a Krull monoid. Then, there exists a free abelian monoid F(P ) such that the inclusion
Hred ↪→ F(P ) is a divisor theory. In this case, F(P ) is uniquely determined up to isomorphism, and the
class group q

(
F(P )

)
/q
(
Hred

)
of H is isomorphic to the v-class group Cv(H) of H (see, [15, Section 2.4]).

It is well known that a Krull monoid H is factorial if and only if the v-class group Cv(H) is trivial. Thus,
the class group measures how far away H is from being factorial, and so it plays a crucial role in the study
of the arithmetic of Krull monoids and domains. If every class of the class group of H contains a prime
divisor, then the combinatorial object, named the monoid of zero-sum (or product-one) sequences over the
class group (see, before Remark 3.3 for the short introduction), reflects the arithmetic of H via transfer
homomorphism [15, Theorem 3.4.10]. We refer the reader to [11, 20] for a survey on the arithmetic of
Krull monoids and to [5] for a recent progress on prime divisors of Krull monoid algebras.

Class semigroups and C-monoids. A detailed presentation can be found in [15, Sections 2.8 and
2.9]. Let F be a factorial monoid, and H ⊆ F be a submonoid. Any two elements y, y′ ∈ F are called
H-equivalent, denoted by y ∼H y′, if y−1H ∩F = (y′)−1H ∩F , i.e., for every x ∈ F , we have that xy ∈ H
if and only if xy′ ∈ H. Then H-equivalence is a congruence relation on F . For y ∈ F , let [y]FH denote the
congruence class of y, and let

C(H,F ) = {[y]FH | y ∈ F} and C∗(H,F ) =
{

[y]FH | y ∈ (F \ F×) ∪ {1}
}
.

Then, C(H,F ) is a commutative semigroup with identity element [1]FH , called the class semigroup of H in
F , and C∗(H,F ) ⊆ C(H,F ) is a subsemigroup, called the reduced class semigroup of H in F . As usual,
the (reduced) class semigroups are written additively.
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A monoid H is said to be a C-monoid defined in F if it is a submonoid of a factorial monoid F =
F××F(P ) such that H× = F×∩H and C∗(H,F ) is finite. If H is a C-monoid defined in F and C∗(H,F )
is a group, then H is a Krull monoid, and conversely, every Krull monoid with finite (v-)class group is a
C-monoid (in this case, the (v-)class group and the class semigroup coincide) (see, [15, Theorem 2.9.12]).
Let H be a C-monoid defined in F . Then, there exist α ∈ N and a subgroup V ⊆ F× such that

(2.1) H× ⊆ V , (F× : V ) | α , V (H \H×) ⊆ H , and

(2.2) q2αF ∩H = qα(qαF ∩H) for all q ∈ F \ F× .

(see, [15, Proposition 2.8.11]). In particular, if p ∈ P and a ∈ pαF , then a ∈ H if and only if pαa ∈ H.
We say that H is dense in F (this is a minimality condition on F , see [15, Theorem 2.9.11]) if vp(H) ⊆ N0

is a numerical monoid for every p ∈ P , i.e., vp(H) ⊆ N0 is an additive submonoid such that N0 \ vp(H) is
finite for every p ∈ P .

The following lemma describes the algebraic properties of C-monoids, and its proof can be found in
[15, Theorems 2.9.11 and 2.9.13].

Lemma 2.1. Let H be a dense C-monoid defined in a factorial monoid F = F× ×F(P ).

1. H is a Mori monoid with (H : Ĥ) 6= ∅.
2. Ĥ = q(H) ∩ F is a Krull monoid with finite v-class group Cv(Ĥ).

3. The map ∂ : Ĥ → F(P ), defined by

∂(a) =
∏
p∈P

pvp(a) ,

is a divisor theory, and there exists an epimorphism C∗(H,F )→ Cv(Ĥ).

In particular, Fred, and so C∗(H,F ), is uniquely determined by H up to isomorphism.

Let R be an integral domain. Then, the set of all non-zero elements R• of R is a multiplicative monoid,
and an ideal-theoretic relationship between R and R• has received wide attention in the literature (see
[15, 22] for the monographs). The domain R is said to be a

• Krull domain if R• is a Krull monoid,

• C-domain if R• is a C-monoid.

If R is a non-local semilocal Noetherian domain, then R is a C-domain if and only if the (v-)class group

of R̂ and the residue ring R/(R : R̂) are both finite ([29, Corollary 4.5]). More generally, C-rings of
commutative rings with zero divisors can be defined in the same manner as the domain case, and we refer
the reader to [17] for a detailed study.

3. The root-closed finitely primary monoids

The monoid H is said to be finitely primary of rank s and exponent α if there exist s, α ∈ N such
that H is a submonoid of a factorial monoid F = F× × [p1, . . . , ps] with s pairwise non-associated prime
elements p1, . . . , ps satisfying

H \H× ⊆ (p1 · · · ps)F and (p1 · · · ps)αF ⊆ H .

If H is finitely primary of rank s, then obviously F = Ĥ and s =
∣∣X(Ĥ)

∣∣, where X(Ĥ) is the set of non-

empty minimal prime ideals of Ĥ. Finitely primary monoids are multiplicative models of one-dimensional
local domains (see Lemma 4.5), and they play a key role in the study of the structure of the monoid of
v-invertible v-ideals of weakly Krull Mori domains (see Corollary 4.7).
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The arithmetic of a seminormal finitely primary monoid was studied in [16, 18], and the following
lemma describes a relationship between the seminormal closure and the root-closure of finitely primary
monoids.

Lemma 3.1. Let H ⊆ F = F× × [p1, . . . , ps] be a finitely primary monoid of rank s and exponent α,
where p1, . . . , ps are pairwise non-associated prime elements of F . Then

H̃ \ (H̃)× = H ′ \ (H ′)× = (p1 · · · ps)F ,

and H̃ is a root-closed finitely primary monoid of rank s and exponent 1 with its complete integral closure

Ĥ = F . Moreover, H̃ is a dense C-monoid defined in F .

Proof. Let x ∈ H̃ \ (H̃)×. Then xn ∈ H for some n ∈ N. Since H× = (H̃)× ∩H [10, Proposition 1], it
follows that

xn ∈ H \H× ⊆ (p1 · · · ps)F ,
and so we infer that

xnα, xnα+1 ∈ (p1 · · · ps)αF ⊆ H ,

where inclusions follow from the definition ofH being a finitely primary monoid. Hence, there exists N ∈ N
such that any integer ` ≥ N can be written as a non-negative linear combination of integers nα and nα+1.

Thus, it follows that x` ∈ H for all ` ≥ N , whence x ∈ H ′ \ (H ′)×. Since (p1 · · · ps)F ⊆ H̃ \ (H̃)×, the
assertion follows by [16, Lemma 3.4.1]. Therefore, we have that

H̃ = (p1 · · · ps)F ∪ (H̃)× ,

and it means that H̃ is a root-closed finitely primary monoid of rank s and exponent 1 such that the

complete integral closure of H̃ is Ĥ = F , because H ⊆ H̃ ⊆ Ĥ = F . Moreover, if we take V = F× and

α = 1, then H̃ satisfies two conditions described in [15, Corollary 2.9.8], and thus H̃ is a C-monoid defined

in F . Since vpi(H) ⊆ N0 is a numerical monoid for all pi, it follows that H̃ is dense in F . �

If C is a semigroup, then a maximal subgroup of C is constructed by an idempotent element via Green’s
relation on C [21, Corollary 4.5]. Thus, idempotent elements of the semigroup C play a central role in
the study of the subgroup structure of C, and so we start with the following observation of idempotent
elements in the class semigroup of general C-monoids.

Lemma 3.2. Let H be a dense C-monoid defined in a factorial monoid F = F× ×F(P ), C = C∗(H,F )
be the reduced class semigroup of H in F , and a ∈ F .

1. If [a]FH ∈ E(C), then a ∈ Ĥ, in particular, a ∈ H if H is finitely generated.

2. Suppose that H is seminormal. Then
{

[x]FH | x ∈ H
}
⊆ E(C), and the equality holds if H is finitely

generated.

3. If H is completely integrally closed, then [a]FH ∈ E(C) if and only if a ∈ H if and only if [a]FH = [1]FH .

Proof. 1. Let a ∈ F be such that [a]FH ∈ E(C). Then a = εpk11 · · · p
kt
t , where ε ∈ F× and p1, . . . , pt ∈ P .

Let α ∈ N be an integer and V ⊆ F× be a subgroup, satisfying (2.1) and (2.2). Let i ∈ [1, t]. Since H is
dense in F , there exists u ∈ H such that pi | u in F . Then, in view of (2.2), there exists a ∈ H such that

pαi | a in F , and hence pαi a ∈ H. Thus pαi = a−1(pαi a) ∈ q(H)∩ F = Ĥ. It follows that, for each i ∈ [1, t],
there exists ci ∈ H such that cip

αn
i ∈ H for all n ≥ 1. Put c = c1 · · · ct ∈ H. In view of (2.1),

caα = (c1 · · · ct)εαpαk11 · · · pαktt = εα(c1p
αk1
1 ) · · · (ctpαktt ) ∈ V (H \H×) ⊆ H ,

Since [a]FH ∈ E(C), [a]FH = [an]FH for all n ≥ 1, so that [can]FH = [c]FH +[an]FH = [c]FH +[a]FH = [c]FH +[aα]FH =
[caα]FH for all n ≥ 1. Since 1(caα) = caα ∈ H, we infer that can = 1(can) ∈ H for all n ≥ 1, whence

a ∈ Ĥ. In particular, if H is finitely generated, then Ĥ = H̃ (see [15, Proposition 2.7.11]), whence aN ∈ H
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for some N ∈ N. Since [a]FH ∈ E(C), [a]FH = [aN ]FH , and thus we infer by the same argument as used before
that a ∈ H.

2. Suppose that H = H ′. If follows by [19, Theorem 1.1] that
{

[x]FH | x ∈ H
}
⊆ E(C). Assume, in

addition, that H is finitely generated. If [y]FH ∈ E(C) for y ∈ F , then item 1. ensures that y ∈ H, whence
E(C) ⊆

{
[x]FH | x ∈ H

}
.

3. Suppose that H = Ĥ. Then H = H ′ = Ĥ, and hence the first equivalent condition follows from
items 1. and 2. For the second equivalent condition, assume that a ∈ H. If a ∈ H×, then it is obvious

that [a]FH = [1]FH . If a ∈ H \ H×, then for x ∈ F , ax ∈ H ensures that 1x = x ∈ q(H) ∩ F = Ĥ = H.
Therefore, a ∈ H is equivalent to [a]FH = [1]FH . �

For the next remark, let us give a brief introduction of the concept of product-one sequences over
finite groups. Let G be a finite group with identity 1G, and F(G) denote the free abelian monoid
with basis G. An element S = g1 · . . . · g` of F(G) is said to be a product-one sequence over G if
1G ∈ π(S) = {gσ(1) · · · gσ(`) ∈ G | σ is a permutation of [1, `]}, i.e., its terms can be ordered such that
their product equals 1G. The monoid B(G) of all product-one sequences over G is a finitely generated
C-monoid (see [3, Theorem 3.2]), and specific examples of the reduced class semigroup of B(G) for some
non-abelian groups G are provided in [26, Section 4]. We refer the reader to [6] for a recent progress of
the algebraic and arithmetic studies over arbitrary groups.

Remark 3.3. Although H is a finitely generated C-monoid, an element [a] with a ∈ H in the reduced
class semigroup of H need not be an idempotent element. To give an example, let G be a finite group

with commutator subgroup G(1). Then, B̂(G) = {S ∈ F(G) | π(S) ⊆ G(1)} (see [13, Proposition 3.1]),

and for S ∈ F(G), [S]
F(G)
B(G) is an idempotent element in the reduced class semigroup of B(G) if and only

if π(S) ⊆ G(1) is a subgroup (see [25, Proposition 3.3]). If G = 〈α, β | α5 = β2 = 1G and βα = α−1β〉
is a dihedral group of order 10, then S = β · α2β · α2 is a product-one sequence over G, but π(S) =

{1G, α, α4} ⊂ 〈α〉 is not a subgroup. Thus, [S]
F(G)
B(G) is not an idempotent element in the reduced class

semigroup of B(G). Moreover, π(β · α2β · α) = 〈α〉 \ {1G} ensures that T = β · α2β · α ∈ B(G)′, but

[T ]
F(G)
B(G) is not an idempotent element in the reduced class semigroup of B(G).

Theorem 3.4. Let H ⊆ F = F× × [p1, . . . , ps] be a root-closed finitely primary monoid of rank s, where
p1, . . . , ps are pairwise non-associated prime elements of F . Then, every element in the reduced class
semigroup is an idempotent element, i.e., C∗(H,F ) = C = E(C). More precisely,

C =
{[
pr11 p

r2
2 · · · prss

]F
H
| ri ∈ {0, 1} for all i ∈ [1, s]

}
and |C| = 2s .

Proof. By Lemma 3.1, we have that H = (p1 · · · ps)F ∪H× and Ĥ = F . Let p ∈ F be a prime element.
We assert that, for every x ∈ F , xp ∈ H if and only if xp2 ∈ H. Let x ∈ F . If xp ∈ H = (p1 · · · ps)F ∪H×,
then it is obvious that xp2 ∈ H. Conversely, if xp2 ∈ H, then for each pj non-associated with p, we have
that vpj (x) ≥ 1, so that vpj (xp) ≥ 1. Thus, we infer that vpi(xp) ≥ 1 for every pi, and hence xp ∈ H.

Therefore, [p]FH = [p2]FH for every prime element p ∈ F . Now, if y = εz is a non-unit element of F , where
ε ∈ F× and z ∈ F \F×, then since H \H× = (p1 · · · ps)F , we infer that [y]FH = [z]FH . Since every non-unit
of F can be written as a product of prime elements of F and [p]FH ∈ E(C) for every prime p ∈ F , it follows
that every element in C is an idempotent element of the form [pr11 · · · prss ]FH for r1, . . . , rs ∈ {0, 1}. �

Every class in the reduced class semigroup need not be an idempotent element for a general finitely
primary monoid as the next simple example shows.

Example 3.5. Let H = p21p2F ∪ {1} ⊆ F = F
(
{p1, p2}

)
be a finitely primary monoid of rank 2 and

exponent 2. If we take V = {1} and α = 2, then H satisfies two conditions described in [15, Corollary
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2.9.8], whence H is a C-monoid. Since p1p2 /∈ H, it follows that H ( H ′ = H̃ = p1p2F by Lemma 3.1.
Moreover, (p1p2)2 = (p21p2)p2 ∈ H implies that [p1p2]FH 6= [(p1p2)2]FH , whence [p1p2]FH is not an idempotent
element in the reduced class semigroup of H in F .

Let H be a root-closed finitely primary monoid. Since every root-closed monoid is a seminormal monoid,
it follows by [19, Theorem 1.1] that the reduced class semigroup of H is a Clifford semigroup, i.e., it is a
union of its subgroups. Moreover, Theorem 3.4 ensures that every singleton set is a maximal subgroup of
the reduced class semigroup of H, which is actually the partial Ponizovsky factor (see [21, Chapter IV]).

Corollary 3.6. Let H ⊆ F = F×× [p1, . . . , ps] be a root-closed finitely primary monoid of rank s, where
p1, . . . , ps are pairwise non-associated prime elements of F , and C = C∗(H,F ). Then, for each i ∈ [1, s],
Ci =

{
[pi]

F
H , [1]FH

}
is a subsemigroup of C, and there exists a semigroup isomorphism C ∼=

∏
i∈[1,s] Ci.

Proof. For each i ∈ [1, s], [pi]
F
H ∈ E(C) by Theorem 3.4, and hence it is obvious that Ci =

{
[pi]

F
H , [1]FH

}
is

a subsemigroup of C. Now, define the map

θ : C → C1 × · · · × Cs by θ
(
[x]FH

)
=
(
[pr11 ]FH , . . . , [p

rs
s ]FH

)
,

where x = εpr11 · · · prss ∈ F with ε ∈ F× and r1, . . . , rs ∈ N0. Then, we may assume by Theorem 3.4 that
r1, . . . , rs ∈ {0, 1}, and hence θ

(
[x]FH

)
∈
∏
i∈[1,s] Ci. As a direct consequence of Theorem 3.4, we infer that

θ is a well-defined bijection. If x = εpr11 · · · prss and y = δpk11 · · · pkss for r1, . . . , rs, k1, . . . , ks ∈ {0, 1} not

all zero, then [xy]FH = [p`11 · · · p`ss ]FH , where ri + ki ≡ `i (mod 2) for all i ∈ [1, s], so that

θ
(
[x]FH + [y]FH

)
= θ

(
[xy]FH

)
=
(
[pr11 ]FH , . . . , [p

rs
s ]FH

)
+
(
[pk11 ]FH , . . . , [p

ks
s ]FH

)
= θ

(
[x]FH

)
+ θ
(
[y]FH

)
,

whence θ is a semigroup isomorphism. �

We end this section with the algebraic structure of the reduced class semigroup of a large class of
finitely primary monoids that are not root-closed.

Theorem 3.7. Let k1, . . . , ks ∈ N, H = pk11 · · · pkss F ∪H× ⊆ F = F× × [p1, . . . , ps] be a finitely primary
monoid of rank s, where p1, . . . , ps are pairwise non-associated prime elements of F , and C = C∗(H,F ).

1. For each i ∈ [1, s], [pkii ]FH = [pki+1
i ]FH , and in particular, [pkii ]FH is an idempotent element in C.

2. C =
{

[pr11 · · · prss ]FH | ri ∈ [0, ki] for all i ∈ [1, s]
}

and |C| =
∏
i∈[1,s](ki + 1).

3. For each i ∈ [1, s], Ci =
{

[pi]
F
H , . . . , [p

ki
i ]FH , [1]FH

}
is a subsemigroup of C, and there exists a semi-

group isomorphism C ∼=
∏
i∈[1,s] Ci.

Proof. 1. Let i ∈ [1, s], and x ∈ F . If xpkii ∈ H, then it is obvious that xpki+1
i ∈ H. If xpki+1

i ∈ H, then

vpi(x) ≥ 0 and vpj (x) ≥ kj for every j 6= i, whence xpkii ∈ H. Thus, [pkii ]FH = [pki+1
i ]FH , and thus,

[pki+2
i ]FH = [pki+1

i ]FH + [pi]
F
H = [pkii ]FH + [pi]

F
H = [pki+1

i ]FH = [pkii ]FH .

By the inductive argument, we infer that [p2kii ]FH = [pkii ]FH , whence [pkii ]FH ∈ E(C).
2. Let x = εpr11 · · · prss , y = δp`11 · · · p`ss ∈ F for some ε, δ ∈ F× and r1, . . . , rs, `1, . . . , `s ∈ N0 not all

zero. We assert that [x]FH = [y]FH if and only if ri ≡ `i (mod ki) for all i ∈ [1, s]. If ri ≡ `i (mod ki) for
all i ∈ [1, s], then it is clear that [x]FH = [y]FH . Suppose now that [x]FH = [y]FH . Then, item 1. ensures that
each ri and `i can be reduced by modulo ki, and thus we can assume that ri, `i ∈ [0, ki], not all zero, for
every i ∈ [1, s]. If ri 6= `i for some i ∈ [1, s], then we may assume that ri � `i, and so we can choose
n ≥ 0 such that ri + n � ki ≤ `i + n. If z ∈ F is an element such that vpi(z) = n and vpj (z) = kj for
every j 6= i, then zy ∈ H, but zx /∈ H, a contradiction. Thus, ri = `i for all i ∈ [1, s], and therefore the
assertion follows.

3. Let i ∈ [1, s]. Then, item 1. implies that Ci =
{

[pi]
F
H , . . . , [p

ki
i ]FH , [1]FH

}
is a subsemigroup of C. Now

we define the map
θ : C → C1 × · · · × Cs by θ

(
[x]FH

)
=
(
[pr11 ]FH , . . . , [p

rs
s ]FH

)
,



8 JUN SEOK OH

where x = εpr11 · · · prss ∈ F with ε ∈ F× and r1, . . . , rs ∈ N0 not all zero. Then, by item 2., we may assume
that ri ∈ [0, ki], not all zero, for every i ∈ [1, s], so that θ

(
[x]FH

)
∈
∏
i∈[1,s] Ci and θ is a well-defined

bijection. If x = εpr11 · · · prss and y = δp`1s · · · p`ss with ε, δ ∈ F× and ri, `i,∈ [0, ki], not all zero, for all
i ∈ [1, s], then in view of ri, `i as elements of a cyclic group Zki modulo ki, it follows that

θ
(
[x]FH + [y]FH

)
= θ

(
[xy]FH

)
=
(
[pr11 ]FH , . . . , [p

rs
s ]FH

)
+
(
[p`11 ]FH , . . . , [p

`s
s ]FH

)
= θ

(
[x]FH

)
+ θ
(
[y]FH

)
,

whence θ is a semigroup isomorphism. �

4. The root-closed weakly Krull Mori monoids

In this section, we study the algebraic structure of the reduced class semigroup of root-closed weakly
Krull Mori monoids. Our main references are [15, 22]. Let H be a monoid. An element q ∈ H is said
to be primary if q /∈ H×, and for all a, b ∈ H, q | ab implies that q | a or q | bn for some n ∈ N. The
monoid H is called primary if H 6= H× and every non-unit is primary. Every finitely primary monoid is
primary, and every saturated submonoid of a primary monoid is again primary. The monoid H is said
to be weakly factorial if every non-unit element can be written as a product of primary elements. Every
primary monoid is weakly factorial, and every coproduct of a weakly factorial monoid is again weakly
factorial.

Let X(H) be the set of non-empty minimal prime ideals of H. For p ∈ X(H), we denote by Hp =
(H \ p)−1H ⊆ q(H) the localization of H at p. The monoid H is said to be weakly Krull [22, Corollary
22.5] if

H =
⋂

p∈X(H)

Hp and {p ∈ X(H) | a ∈ p} is finite for all a ∈ H .

If H is a weakly Krull monoid, then the family of embeddings (ϕp : H ↪→ Hp)p∈X(H) induces a divisor

homomorphism ϕ : H →
∐

p∈X(H)(Hp)red given by ϕ(a) = (aH×p )p∈X(H) [15, Proposition 2.6.2]. Note

that Hp is a primary monoid for every p ∈ X(H), and a weakly Krull monoid is Krull if and only if Hp is
a discrete valuation monoid, i.e., (Hp)red ∼= N0, for all p ∈ X(H). If H is Mori, then H is weakly factorial
if and only if H is weakly Krull and Cv(H) = {0} (see, [22, Exercise 5 on p. 258]).

A domain R is said to be a weakly Krull domain if R• is a weakly Krull monoid. Weakly Krull domains
generalize one-dimensional Noetherian domains, but they need not be integrally closed. For instance,
every order in a number field is a weakly Krull domain (in particular, the principal order is a Krull
domain). Let R be a domain, and H be a torsionless monoid such that q(H) is torsion-free. Then, the
monoid algebra R[H] is root-closed if and only if both R and H are root-closed [1, Corollary 2.5], and as
a recent result, we refer the reader to [4] for a characterization of when a monoid algebra is weakly Krull.
Clearly, every Krull monoid is a root-closed weakly Krull Mori monoid, and the algebraic and arithmetic
properties are well-studied for a Krull monoid.

We start with the following basic properties of root-closed monoids, and the seminormal analogues can
be found in [16, Lemma 3.2].

Lemma 4.1. Let F be a monoid.

1. If S ⊆ F is a submonoid, then S̃−1F = S−1F̃ and (S−1F )′ = S−1F ′. Furthermore, if F is
root-closed (resp., seminormal), then S−1F is root-closed (resp., seminormal).

2. If (Fi)i∈I is a family of monoids such that F =
∐
i∈I Fi, then F̃ =

∐
i∈I F̃i and F ′ =

∐
i∈I F

′
i . In

particular, F is root-closed (resp., seminormal) if and only if Fi is root-closed (resp., seminormal)
for all i ∈ I.

3. F̃red = F̃ /F× and (Fred)′ = F ′/F×, and in particular, F is root-closed (resp., seminormal) if and
only if Fred is root-closed (resp., seminormal).
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4. If F is root-closed (resp., seminormal) and H ⊆ F is a saturated submonoid, then H is root-closed
(resp., seminormal).

Proof. We prove the statements only for the root-closed case.
1. Let S ⊆ F be a submonoid, and x ∈ q(S−1F ) = q(F ) be such that xn ∈ S−1F for some n ∈ N.

Then, there exists s ∈ S such that sxn ∈ F , so that (sx)n ∈ F . It follows that sx ∈ F̃ , and thus x ∈ S−1F̃ .

For the reverse containment, if x ∈ S−1F̃ , then there exist s ∈ S and n ∈ N such that (sx)n ∈ F . Thus, we

have that xn ∈ S−1F , so that x ∈ S̃−1F , whence the assertion follows. Furthermore, if F is root-closed,

then S̃−1F = S−1F̃ = S−1F , and thus S−1F is root-closed.

2. It is easy to be verified from q(F ) =
∐
i∈I q(Fi).

3. Let ϕ : q(F ) → q(F )/F× = q(Fred) be the canonical epimorphism. Then ϕ|F : F → Fred is
surjective, and hence, if x ∈ q(F ) and n ∈ N, then xn ∈ F if and only if ϕ(x)n ∈ Fred. Thus, it follows

that x ∈ F ′ (resp., x ∈ F̃ ) if and only if ϕ(x) ∈ (Fred)′ (resp., ϕ(x) ∈ F̃red). As submonoids of q(Fred),

we infer that (Fred)′ = F ′/F× and F̃red = F̃ /F×.

4. Let F be a root-closed monoid, and H ⊆ F be a saturated submonoid. If x ∈ q(H) ⊆ q(F ) is such
that xn ∈ H ⊆ F for some n ∈ N, then since F is root-closed and H ⊆ F is saturated, x ∈ q(H)∩F = H.
Thus, H is root-closed. �

Next, we show that the localization of a weakly Krull monoid at a minimal prime preserves the root-
closedness, and the seminormal and Mori analogues can be found in [16, Proposition 5.3].

Lemma 4.2. Let H be a weakly Krull monoid. Then H is root-closed (resp., seminormal, or Mori) if
and only if Hp is root-closed (resp., seminormal, or Mori) for each p ∈ X(H).

Proof. We prove the statements only for the root-closed case. (⇒) This follows by Lemma 4.1.1. (⇐)
Suppose that Hp is root-closed for each p ∈ X(H). Then, by Lemma 4.1.2, the coproduct

∐
p∈X(H)Hp

is root-closed. Since H is weakly Krull, there is a divisor homomorphism from H to
∐

p∈X(H)Hp, and it

follows that Hred is isomorphic to a saturated submonoid of
∐

p∈X(H)Hp. By Lemma 4.1.4, Hred is also

root-closed, and therefore, H is root-closed by Lemma 4.1.3. �

Proposition 4.3. Let H be a weakly Krull Mori monoid with ∅ 6= f = (H : Ĥ) ( H such that Hp is
finitely primary for each p ∈ X(H).

1. Ĥ is Krull, P ∗ = {p ∈ X(H) | f ⊆ p} is finite, for each p ∈ X(H) \ P ∗, Hp is a discrete valuation
monoid.

2. I∗v (H) ∼= F(P )×
∏

p∈P∗(Hp)red, where P = X(H) \ P ∗, is a weakly factorial Mori monoid.

Proof. 1. Since H is a Mori monoid, the assertion follows by [15, Theorems 2.2.5 and 2.6.5].

2. [16, Theorem 5.3.4]. �

Now, we give the main result of this paper concerning the algebraic structure of the reduced class
semigroup of a root-closed weakly Krull Mori monoid.

Theorem 4.4. Let H be a root-closed weakly Krull Mori monoid such that ∅ 6= f = (H : Ĥ) ( H and Hp

is finitely primary for each p ∈ X(H). Assume that Ĥ×p /H
×
p is finite for each p ∈ P ∗ = {p ∈ X(H) | f ⊆ p}.

1. I∗v (H) is a C-monoid defined in Î∗v (H), and there exists a semigroup isomorphism

C∗
(
I∗v (H), Î∗v (H)

) ∼= ∏
p∈P∗

C∗(Hp, Ĥp) ∼=
∏

p∈P∗

(
C1 × · · · × Csp

)
,
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where for each p ∈ P ∗, sp =
∣∣{P ∈ X(Ĥ) | P ∩ H = p}

∣∣, Ci =
{

[Pi(p)]
Ĥp

Hp
, [1]

Ĥp

Hp

}
for i ∈ [1, sp],

and
{
P1(p), . . . ,Psp(p)

}
is the set of pairwise non-associated prime elements in Ĥp.

2. Suppose that Cv(H) is finite.

(a) Hred is a C-monoid defined in F = F(P )×
∏

p∈P∗ Ĥp/H
×
p .

(b) If Hred is dense in F , then H is weakly factorial if and only if Ĥ is factorial. In this case,

C∗(Hred, F ) ∼= C∗
(
I∗v (H), Î∗v (H)

)
.

Proof. 1. By Proposition 4.3.2, there exists an isomorphism

I∗v (H) ∼= F(P )×
∏

p∈P∗

(Hp)red , where P = X(H) \ P ∗ .

Let p ∈ P ∗. Then, Hp is root-closed (by Lemma 4.2) and finitely primary of rank
∣∣X(Ĥp)

∣∣. By [16,

Lemma 5.1], {P ∈ X(Ĥ) | P ∩H = p} = {q ∩ Ĥ | q ∈ X(Ĥp)} is the set of all non-empty minimal prime

ideals of Ĥ lying above p, whence
∣∣X(Ĥp)

∣∣ =
∣∣{P ∈ X(Ĥ) | P ∩H = p}

∣∣ = sp. Thus, Hp is a root-closed
finitely primary monoid of rank sp, and by Lemma 3.1, it is a C-monoid defined in a factorial monoid

Ĥp. Note that Ĥp = Ĥp (see [15, Theorem 2.3.5]). Since Ĥ×p /H
×
p is finite for each p ∈ P ∗, [15, Theorem

2.9.16] ensures that F(P ) ×
∏

p∈P∗ Hp is a C-monoid defined in a factorial monoid F(P ) ×
∏

p∈P∗ Ĥp,

so that
(
F(P ) ×

∏
p∈P∗ Hp

)
red

is also a C-monoid defined in F(P ) ×
∏

p∈P∗ Ĥp/H
×
p by [15, Theorem

2.9.10]. Then, since ̂(Hp)red = Ĥp/H
×
p = Ĥp/H

×
p , it follows that Î∗v (H) ∼= F(P ) ×

∏
p∈P∗

̂(Hp)red =

F(P )×
∏

p∈P∗ Ĥp/H
×
p , whence I∗v (H) is a C-monoid defined in Î∗v (H).

By [15, Lemmas 2.8.6 and 2.8.4], we infer that

C∗
(
I∗v (H), Î∗v (H)

) ∼= ∏
p∈P∗

C∗
(
(Hp)red, ̂(Hp)red

)
=
∏

p∈P∗

C∗
(
Hp/H

×
p , Ĥp/H

×
p

) ∼= ∏
p∈P∗

C∗(Hp, Ĥp) .

For each p ∈ P ∗, since Hp ⊆ Ĥp is root-closed finitely primary of rank sp, it follows by Corollary 3.6 that

C∗(Hp, Ĥp) ∼= C1 × · · · × Csp ,

where Ci =
{

[Pi(p)]
Ĥp

Hp
, [1]

Ĥp

Hp

}
is a subsemigroup of C∗(Hp, Ĥp) for each i ∈ [1, sp], and

(
Ĥp

)
red
∼=[

P1(p), . . . ,Psp(p)
]

with pairwise non-associated prime elements P1(p), . . . ,Psp(p) in Ĥp.

2.(a) Since I∗v (H)/H(H) = Cv(H) is finite, H(H) is a C-monoid defined in Î∗v (H) by [15, Theorem

2.9.10]. Let F = F(P ) ×
∏

p∈P∗ Ĥp/H
×
p . Since Hred

∼= H(H) and F ∼= Î∗v (H), we infer that Hred is a
C-monoid defined in F ,

2.(b) (⇒) Suppose that H is weakly factorial. By [16, Proposition 5.4], we infer that there exists an

epimorphism ϕ : Cv(H) → Cv(Ĥ) given by ϕ([a]) = [av(Ĥ)], where a ∈ I∗v (H). Since H is a weakly

Krull Mori monoid, it follows that Cv(H) = {0}, and thus Ĥ is a Krull monoid (by Proposition 4.3) with

Cv(Ĥ) = {0}. Hence, Ĥ is factorial.

(⇐) Suppose that Ĥ is factorial, i.e., H is a Krull monoid with trivial v-class group. Then,
(
Ĥ/H×

)
red

=

Ĥred is a free monoid, so that Ĥred = Ĥ/H× is also factorial. Thus, Ĥred is a Krull monoid with

Cv
(
Ĥred

)
= {0}. Note that Hred is a C-monoid defined in F by 2.(a). Since Hred is dense in F , it follows

by Lemma 2.1 that Ĥred is a saturated and cofinal submonoid of F , and there exists a divisor theory from

Ĥred to the non-unit part of a factorial monoid F . By [15, Theorems 2.4.7 and 2.8.7], we have that

Cv
(
Ĥred

) ∼= F/Ĥred
∼= C

(
Ĥred, F

)
,
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and thus C
(
Ĥred, F

)
is a trivial semigroup. It means that, for every x ∈ F , [x]F

Ĥred
= [1]F

Ĥred
implies that

x ∈ Ĥred, so that Ĥred = F . If a ∈ I∗v (H), then since Hred
∼= H(H) and F ∼= Î∗v (H), we obtain that

a ∈ Î∗v (H) = Ĥ(H) ⊆ q
(
H(H)

)
. Since H(H) is saturated in I∗v (H), we infer that a ∈ H(H), whence

H(H) = I∗v (H). Therefore, H is a weakly Krull Mori monoid with Cv(H) = {0}, so that H is weakly
factorial. The remaining assertion follows by item 1. �

The following lemma describes a characterization of when the multiplicative monoid of a domain is
root-closed finitely primary. A seminormal analogue can be found in [16, Lemma 3.4].

Lemma 4.5.

1. A domain R is one-dimensional and local if and only if R• is a primary monoid.

2. The following statements are equivalent for a domain R :
(a) R is a root-closed (resp., seminormal) one-dimensional local Mori domain.
(b) R• is a root-closed (resp., seminormal) finitely primary monoid.

Proof. 1. [15, Proposition 2.10.7].

2. (a)⇒ (b) Suppose that R is a root-closed one-dimensional local Mori domain. By 1., R• is a primary

monoid. We assert that (R• : R̂•) 6= ∅. Note that R \R× 6= {0}, for otherwise R must be a field, so that

R is zero-dimensional, a contradiction. Let 0 6= a ∈ R \R×. If x ∈ R̂•, then there exists c ∈ R• such that
cxn ∈ R• for all n ∈ N. If c ∈ R×, then xn ∈ R for all n ∈ N, and in particular, x ∈ R•. Thus, ax ∈ R•.
If c ∈ R \ R×, then since R• is primary, it follows that c | ak for some k ∈ N, so that ak = bc for some
b ∈ R•. Thus, (ax)k = b(cxk) ∈ R, and since R is root-closed, we infer that ax ∈ R•. In either case, we

obtain that a ∈ (R• : R̂•). Therefore, the assertion follows by [15, Proposition 2.10.7].
(b) ⇒ (a) Since R• is root-closed finitely primary, it follows by Lemma 3.1 that R• is a C-monoid, and

hence R• is a Mori monoid [15, Theorem 2.9.13], i.e., R is a root-closed Mori domain. Since every finitely
primary monoid is primary, we infer by item 1. that R is a one-dimensional local domain. �

Example 4.6. 1. Let Q be the algebraic closure of Q, K be the subfield of Q consisting of all elements
u ∈ Q such that the minimal polynomial for u over Q is solvable by radicals over Q, F = K(α), and
V = F [[X]], where α ∈ Q \K and X is an indeterminate over F . Then, R = K + XV is a root-closed
one-dimensional local Noetherian (and so, Mori) domain [1, Example 2.2].

2. Let R be a non-principal order in a number field. Then, R is a one-dimensional Noetherian domain

with (R : R̂) 6= {0}, especially, it is a weakly Krull Mori domain. For each non-zero prime ideal p of

R, Rp is a one-dimensional local Noetherian domain and R̂×p /R
×
p is finite (see [24, Section I.12]). It is

known that R is root-closed if and only if (R : R̂) is an intersection of maximal ideals Pi of R̂ such

that
∣∣R̂/Pi∣∣ = 2 for each Pi (see [27, Corollary 2.2]). Thus, every multiplicative monoid of a root-closed

non-principal order in a number field satisfies the hypothesis of Theorem 4.4. In particular, R = Z[
√

17]
is a root-closed non-principal order in a quadratic number field ([2, Proposition]).

Corollary 4.7. Let R be a weakly Krull Mori domain with {0} 6= f = (R : R̂) ( R, X(R) be the set of
non-zero minimal prime ideals of R, P ∗ = {p ∈ X(R) | f ⊆ p}, and P = X(R) \ P ∗. For each p ∈ P ∗, let

sp be the number of prime ideals p̂ ∈ X(R̂) such that p̂ ∩R = p.

1. P ∗ is finite, and for each p ∈ P ∗, the monoid R•p is finitely primary of rank sp.

2. There exists a monoid isomorphism I∗v (R) ∼= F(P )×
∏

p∈P∗(R•p)red given by a 7→ (apR
×
p )p∈X(R) if

ap = apRp for all p ∈ X(R).

3. Suppose that R is root-closed, Cv(R) is finite, and (R̂•p)×/(R•p)× is finite for all p ∈ X(R).

(a) R is a C-domain, in particular, (R•)red is a C-monoid defined in F = F(P )×
∏

p∈P∗ R̂•p/(R
•
p)×.
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(b) If (R•)red is dense in F , then R is weakly factorial if and only if R̂ is factorial. In this case,

C∗
(
(R•)red, F

) ∼= ∏
p∈P∗

C∗
(
R•p, R̂

•
p

) ∼= ∏
p∈P∗

(C1 × · · · × Csp) ,

where for each p ∈ P ∗, Ci =
{

[Pi(p)]
R̂•

p

R•
p
, [1]

R̂•
p

R•
p

}
for each i ∈ [1, sp] and

{
P1(p), . . . ,Psp(p)

}
is the set of pairwise non-associated prime elements in R̂•p.

Proof. For each p ∈ X(R), it follows by Lemma 4.5 that R•p is a finitely primary monoid. Thus, all
assertions follow by Proposition 4.3 and Theorem 4.4. �
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